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Abstract. Conceptual hydrological models are preferable for
real-time flood forecasting, among which the Xin’anjiang
(XAJ) model has been widely applied in humid and semi-
humid regions of China. Although the relatively simple mass
balance scheme ensures a good performance of runoff simu-
lation during flood events, the model still has some defects.
Previous studies have confirmed the importance of evapo-
transpiration (ET) and soil moisture content (SMC) in runoff
simulation. In order to add more constraints to the origi-
nal XAJ model, an energy balance scheme suitable for the
XAJ model was developed and coupled with the original
mass balance scheme of the XAJ model. The detailed pa-
rameterizations of the improved model, XAJ-EB, are pre-
sented in the first part of this paper. XAJ-EB employs var-
ious meteorological forcing and remote sensing data as in-
put, simulating ET and runoff yield using a more physically
based mass–energy balance scheme. In particular, the energy
balance is solved by determining the representative equilib-
rium temperature (RET), which is comparable to land sur-

face temperature (LST). The XAJ-EB was evaluated in the
Lushui catchment situated in the middle reach of the Yangtze
River basin for the period between 2004 and 2007. Vali-
dation using ground-measured runoff data proves that the
XAJ-EB is capable of reproducing runoff comparable to the
original XAJ model. Additionally, RET simulated by XAJ-
EB agreed well with moderate resolution imaging spectro-
radiometer (MODIS)-retrieved LST, which further confirms
that the model is able to simulate the mass–energy balance
since LST reflects the interactions among various processes.
The validation results prove that the XAJ-EB model has su-
perior performance compared with the XAJ model and also
extends its applicability.
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1 Introduction

Hydrological models are widely used for real-time flood
forecasting due to their abilities to predict hydrological
fluxes (e.g., runoff) and states (e.g., soil moisture) with var-
ious leading time (Chen et al., 2016). These models can
be grouped as physically based models, which are mainly
based on partial differential equations (Richards equation, de
St. Venant equation, etc.) or conceptual models, which usu-
ally employ a number of mathematical functions or distri-
bution curves to reproduce hydrological processes (Kampf
and Burges, 2007; Niu et al., 2014). Conceptual models
are preferred for flood forecasting with consideration of the
data and computational conditions (Blöschl et al., 2008;
Hapuarachchi et al., 2011). Examples are the Sacramento
soil moisture accounting (SAC-SMA) model (Burnash et al.,
1973) implemented by the US National Weather Service
(NWS) (Smith et al., 2003), a spatially distributed flash flood
model used in northern Austria (Blöschl et al., 2008), the
HBV model (Bergström and Singh, 1995; Zhang and Lind-
ström, 1997) adopted for the forecasting of Savinja catch-
ment (Kobold and Brilly, 2006) and the Xin’anjiang (XAJ)
model (Zhao, 1995) applied in the Huaihe River basin, China
(Lu et al., 2008). These operational practices have proved the
accuracy of stream discharge predicted by conceptual mod-
els, which is usually the major concern of real-time flood
forecasting.

In China, the XAJ model is the most widely used model
for flood forecasting in humid and semi-humid regions (Liu
et al., 2009; Yao et al., 2009; Zhao, 1992). The XAJ model
employs a spatial probability distribution curve to represent
the variability of tension water capacity in the catchment and
calculates runoff generation based on the conception of mass
balance (Zhao, 1995). With respect to the evapotranspiration
(ET), the XAJ model uses pan evaporation as its input, and
then computes actual ET using an empirical relationship, tak-
ing only the soil moisture content (SMC) into account. Such
a generalized scheme successfully strikes a balance between
model complexity and computational accuracy, providing a
reasonable runoff prediction during flood events after proper
calibration against runoff observations.

At present, however, the traditional calibration approach
is becoming more challenging for the XAJ model. This is
partly due to the fact that the model parameters have become
distributed to take account of the heterogeneities of the catch-
ment (Xia and Zhang, 2009; Yao et al., 2012), which theoreti-
cally requires more constraints to calibrate and validate these
spatially distributed parameters.

Moreover, although precipitation and runoff can be mea-
sured by traditional approaches, accurate catchment-average
ET and SMC are difficult to obtain at the catchment scale.
Therefore, the bias of simulations is more likely to be accu-
mulated in SMC when only mass balance is considered. The
significance of SMC to real-time flood forecasting has grad-
ually been recognized. Studies showed that the bias in pre-

dicting flood peaks is related to unrealistic antecedent SMC
estimation (Huza et al., 2014), and therefore the performance
of real-time flood forecasting can be improved by setting or
assimilating initial SMC (Brocca et al., 2009; Berthet et al.,
2009; Komma et al., 2008; Tramblay et al., 2010; Wanders
et al., 2014). The accuracy of SMC estimation before flood
events largely depends on ET estimation. In addition, con-
sidering the abilities to extend the leading time and quan-
tify predictability, ensemble flood forecasting techniques are
more attractive today (Cloke and Pappenberger, 2009), and
the estimation of SMC and ET is even more important in en-
semble flood forecasting due to a longer leading time.

For the aforementioned reasons, it is therefore necessary
to introduce more constraints to the XAJ model, and the en-
ergy balance can serve this purpose well since the hydrologi-
cal processes are governed by both mass and energy balance.
One feasible way to introduce the energy balance to the XAJ
model is through ET. As is discussed before, the simple and
empirical ET routine of the XAJ model is based on mass bal-
ance only, and the major defects of the ET routine are (1) the
input pan evaporation is measured only at few specific lo-
cations, reflecting daily evaporation from open water, which
means that the potential ET (PET) over a large area is as-
sumed to be the same; such an assumption dose not always
hold under heterogeneous meteorology or underlying surface
conditions (Xu et al., 2006; Yuan et al., 2008); (2) calibration
of Kc (see Sect. 2.1 for details), a sensitive parameter of the
XAJ model controlling water balance, is needed to convert
pan evaporation to PET, which is impossible for ungauged
catchments where observed runoff is unavailable; and (3) the
empirical relationship linking PET with actual ET only takes
water balance into account, neglecting other factors (e.g.,
meteorological conditions) that control ET processes (Wang
and Dickinson, 2012).

It should be noted that the energy balance-based ET
schemes have been intensively studied in the land surface
modeling community (Overgaard et al., 2006). Land surface
models (LSMs) are developed to provide various fluxes and
states connecting the atmosphere and land surface (Over-
gaard et al., 2006; Niu et al., 2011). Most LSMs have an
energy balance component for ET estimation, but the way
these models solve the energy balance differs. According to
Su (2002) and Kalma et al. (2008), generally three differ-
ent approaches are employed by LSMs for ET estimation:
(1) calculate all energy balance components except latent
heat flux, which is obtained as the residual of the energy bud-
get; (2) compute all components involved in energy balance
by closing the balance equation; latent heat is solved at the
same time when energy budget is closed; and (3) an empiri-
cal approach using water stress to derive ET. However, these
approaches are rarely applied in hydrological models, espe-
cially for real-time flood forecasting, because their structures
are complex and generally require considerable data and pa-
rameters to drive the model.
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Benefiting from remote sensing and data assimilation tech-
niques, more meteorological and land surface data are avail-
able now. The scientific community has been working to im-
prove the ET scheme of hydrological models (e.g., Corbari
et al., 2011; Niu et al., 2014; Spies et al., 2015; Yan et al.,
2012). In particular, some efforts have been made to im-
prove the ET simulation of the XAJ model. Methodologies
reported can be summarized as two approaches. The first ap-
proach was to introduce a physically based formula to simu-
late PET based on meteorological measurements, aiming to
provide more accurate PET input while the XAJ model struc-
ture remained unchanged (Yuan et al., 2008). The second ap-
proach involved replacing the ET routine by a more sophis-
ticated scheme, typically the Penman–Monteith (PM) equa-
tion, which simulates actual ET by meteorological variables,
remote sensing data and modeled SMC (Li et al., 2009; Zhou
et al., 2013). These studies have demonstrated the feasibility
of improving the ET scheme of the XAJ model. In these pre-
vious works, however, the mass balance and energy balance
are either isolated or one-way linked, neglecting the interac-
tions between them. Additionally, the PM equation employed
tends to neglect evaporation due to the “big leaf” assumption
(Yan et al., 2012). A more scientific way to simulate ET is
by coupling both the mass and energy. For example, as re-
ported by Corbari et al. (2011), a water balance model FEST
(Rabuffetti et al., 2008) was augmented by coupling a en-
ergy balance scheme and various case studies have confirmed
its applicability under different conditions (Masseroni et al.,
2011; Corbari et al., 2013; Corbari and Mancini, 2014).

The overall goal of this paper is to develop an energy bal-
ance scheme suitable for the XAJ model, with which the
mass-balance-based runoff yield scheme of the original XAJ
model can be fully coupled. The improved model employs
a physically based mass–energy balance component to sim-
ulate ET and runoff yield, imposing more constrains on the
XAJ model. The remainder of the paper is organized as fol-
lows: Sect. 2 presents the basic theory we adopted to develop
the mass–energy balance scheme for the XAJ model, Sect. 3
reports the calibration and validation of the improved model
against various observations, Sect. 4 further discusses the ad-
vantages of the improved model and Sect. 5 summarizes the
study.

2 Improving the XAJ model

2.1 The XAJ Model and its mass balance scheme

The XAJ model was developed by Zhao (1977, 1995) based
on the concept of runoff formation with respect to repletion
of storage, which means that for each location in the catch-
ment, there is no runoff yielded until the soil water deficit is
replenished. Therefore, the XAJ model is the most suitable
for humid and semi-humid regions where saturation-excess
runoff is more likely to occur. A statistical tension water ca-

Figure 1. Flow chart of the XAJ model. The red box denotes
the model input consisting of precipitation (P ) and pan evapora-
tion (EW); the yellow boxes denote the model-simulated fluxes in-
cluding evapotranspiration (ET) and discharge (TQ); the green box
denotes the discharge after routing simulation (usually using the
Muskingum method). Symbols outside the boxes are model param-
eters.

pacity curve was introduced to represent the spatial distribu-
tion of tension water capacity (maximum soil water deficit,
i.e., the difference between field capacity and wilting point),
which is regarded as the essence of the XAJ model. The flow
chart of the XAJ model is shown in Fig. 1. All symbols out-
side the blocks are parameters, whose physical meanings are
shown in Table 1. The inputs to the model are areal mean
rainfall (P ) and measured pan evaporation (EW) while the
outputs are the discharge at the outlet of the basin (TQ) and
the actual ET.

The basic computational unit of the XAJ model is the el-
ement area, which, in principal, is a small natural catchment
that has relatively homogeneous underlying surface charac-
teristics (terrain, soil and vegetation, etc.). Simulation of out-
flow from each element area consists of four major compo-
nents (Li et al., 2011; Qu et al., 2011). Here we only present
a simple description; for mote details, refer to Zhao (1992):

1. evapotranspiration, which is simulated by a three-layer
soil (i.e., upper, lower, and deep layer) model based on
pan evaporation and soil moisture;

2. runoff yield, which, based on the tension water capacity
curve, simulates the runoff yield according to the rain-
fall and soil storage deficit;
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Table 1. Parameter symbols and corresponding definitions in the XAJ model. Also shown the parameters calibrated for the Lushui(LS)
catchment during year 2004 and 2005.

Parameter Definition Calibrated value for
the LS catchment

IMP Ratio of impermeable area to the total area in the catchment 0.01
KC Ratio of potential evapotranspiration to pan evaporation 0.95
B Exponential of the distribution of tension water capacity 0.50
WM Elementary area mean tension water capacity Vary
WUM Tension water capacity of upper layer Vary
WLM Tension water capacity of lower layer Vary
C Deeper evapotranspiration coefficient 0.10
SM Elementary area mean free water capacity 45.00
EX Exponential of the distribution of free water capacity 1.50
KG Outflow coefficient of free water storage to the ground flow 0.40
KI Outflow coefficient of free water storage to the sub-flow 0.40
CI Recession constant of sub-flow storage 0.63
CG Recession constant of groundwater storage 0.99
CS Recession constant during stream routing in the elementary area 0.55
LAG Lag time step during stream routing in the elementary area 0

3. runoff separation, which separates the abovementioned
runoff into three components, i.e., surface, subsurface
and groundwater;

4. flow routing, which transfers the local runoff to the
outlet of each basin forming the outflow. Several ap-
proaches including a unit hydrograph, linear reservoir,
and lag and route can be adopted.

The mass balance of the XAJ model is expressed as

1W = P −R−ET, (1)

where 1W is the soil water content storage term (mm); P is
precipitation (mm); and R is runoff yield (mm).

The mass balance solution depends on the nonlinear re-
lationship between W and R represented by a tension water
capacity curve (Fig. 2), for a given time step when P is larger
than ET, R is calculated as

R = P −ET− (WM−W0)+WM
(

1−
P −ET+A

WMM

)1+B

(P −ET+A<WMM) (2)
R = P −ET− (WM−W0)

(P −ET+A>WMM), (3)

where W0 is the initial soil water (mm), A is the value of
Y axis of the tension water capacity curve corresponding to
W0 (mm), WMM is the maximum tension water capacity
over the catchment (mm) and WM and B are parameters of
the XAJ model as listed in Table 1.

Figure 2. Tension water capacity curve of the XAJ model, which
describes the tension water capacity distribution over the catchment.
Each point on the curve represents a tension water capacity (Y axis,
ranging from 0 to WMM) and the proportion of the area that has a
tension water capacity no larger than that value (X axis). The mass
balance calculation procedures of the XAJ model are presented: for
a given time step when precipitation (P ) is larger than evapotran-
spiration (ET), the difference between P and ET is partitioned into
runoff (R, green shaded area) and soil water (1W , blue shaded area)
based on the tension water capacity curve and initial soil water (W0,
yellow shaded area).

2.2 Energy balance scheme developed for the XAJ
model

The energy balance of land surface is expressed as

1S = Rn−G−H −LE, (4)
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where1S is the energy storage term (W m−2),Rn is net radi-
ation (W m−2),G is ground heat flux (W m−2),H is sensible
heat flux (W m−2) and LE is latent heat flux (W m−2).

In this paper, a “patch approach” was adopted to distin-
guish the energy fluxes between bare soil and the canopy
(Lhomme and Chehbouni, 1999; Lu et al., 2014), assuming
both bare soil and the canopy receive the same radiation load-
ing, and the total sensible and latent heat fluxes are weighted
by the canopy fraction fv derived from leaf area index (LAI):

fv = 1− e−0.52LAI (5)

1. Net radiation (Rn)

Rn is the arithmetic difference between downward and
upward short- and long-wave radiation:

Rn = Rds(1−α)+Rdl− ζσ (RET4), (6)

where Rds and Rdl are downward short- and long-
wave radiation (W m−2), respectively; α is land sur-
face albedo (–); ζ is land surface emissivity (–); σ is
the Stefan–Boltzmann constant (W m−2 K−4); and rep-
resentative equilibrium temperature (RET) is represen-
tative equilibrium temperature (K).

2. Ground heat flux (G)

G is the flux that is transferred between the land surface
and the subsurface via soil thermal conduction:

G= (ks/dz)(RET− Tsoil), (7)

where ks is soil thermal conductivity (W m−1 K−1),
which is related to soil conditions (Corbari et al., 2011;
McCumber and Pielke, 1981); dz is the soil depth for
calculating ground heat flux (m); and Tsoil is soil tem-
perature at depth dz (K).

Equation (7) can be solved numerically together with
the heat diffusion equation as implemented by many
LSMs; however, such an approach requires detailed
thermal and hydrological information on different soil
layers, which is not available in the XAJ model. In ad-
dition to the numerical solution, there are also other pa-
rameterizations that deriveG from more easily available
data, e.g., net radiation (Idso et al., 1975; Santanello
and Friedl, 2003; Su, 2002), sensible heat flux (Cellier
et al., 1996) or surface temperature (Bhumralkar, 1975;
Deardorff, 1978; Wang and Bras, 1999). Liebethal and
Foken (2007) and Venegas et al. (2013) evaluated dif-
ferent approaches and found these alternatives can also
reproduce reasonable G after calibration. In order to
accommodate the energy balance scheme, we adopted
force restore model proposed by Bhumralkar (1975) and
Blackadar (1976) to estimate G from RET, the original
force restore equation to estimate soil temperature can
be rearranged as

G=
1
CT

[
(RET−RET0)

1t
+

2π
τ
(RET− T )

]
, (8)

where RET0 is the representative equilibrium tempera-
ture of the previous time step (K); 1t is time step (s);
2π
τ

is the angular frequency for diurnal forcing (radi-
ans s−1); T is the mean surface temperature (K); and
CT is the coefficient weighted by the volumetric heat
capacity of soil and canopy:

CT = 1/
(

1− fv
Cg
+
fv

Cv

)
, (9)

whereCg is the soil heat capacity (MJ m−3 K−1) andCv
is the canopy heat capacity (MJ m−3 K−1).

3. Sensible heat flux (H )

H represents heat energy transferred between the sur-
face and air when their temperatures are different, which
is the weighted average of the sensible heat flux of bare
soil and the canopy:

H = (1− fv)Hs+ fvHc, (10)

where Hs and Hc are the sensible heat flux of bare soil
and the canopy (W m−2), respectively, which are param-
eterized as

Hs =
ρacp

rabs
(RET− Ta), (11)

Hc =
ρacp

ra
(RET− Ta), (12)

where ρa is air density (kg m−3); cp is the specific heat
capacity of air (MJ kg−1 K−1); Ta is air temperature (K);
rabs and ra are the aerodynamic resistances for bare soil
and canopy (s m−1), respectively.

The aerodynamic resistance determines the transfer of
heat and water vapor from evapotranspiration surface
into the air at reference height. For the canopy compo-
nent, ra is evaluated according to Thom (1972) as

ra =

[
ln
(
zm−d
zom

)
−9m

(
zm−d
L

)][
ln
(
zh−d
zoh

)
−9h

(
zh−d
L

)]
k2u

, (13)

where zm and zh are the reference heights where wind
and humidity are measured (m); d is the zero plane dis-
placement height (m); zom and zoh are the roughness
length governing the transfer of momentum and heat,
respectively (m); 9m and 9h are atmospheric stability
correction factors for momentum and heat (–), respec-
tively; L is the Obukhov length (m); k is the Von Kar-
man constant; and u is wind speed (m s−1).

In this paper, we estimated d , zom and zoh by empirical
functions based on canopy height h (m) (Allen et al.,
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1998) :

d = 0.666h, (14)
zom = 0.123h, (15)
zoh = 0.1zom. (16)

The aerodynamic resistance for bare soil rabs can be de-
termined in the same way as ra using Eq. (13), but with
different roughness length for bare soil. In this paper, we
assumed 0.01 and 0.001 m for zom and zoh, respectively.

4. Latent heat flux (LE)

LE is the energy used for the phase change of water,
which is directly related to ET. It is also the weighted
average of the latent heat flux of bare soil and the
canopy:

LE= (1− fv)LEs+ fvLEc, (17)

where LEs and LEc are the latent heat fluxes of bare
soil and the canopy (W m−2), respectively, which are
parameterized following Corbari et al. (2011) as

LEs =
ρacp

γ (rabs+ rs)
(e∗− ea), (18)

LEc =
ρacp

γ (ra + rc)
(e∗− ea), (19)

where γ is the psychometric constant (Pa ◦C−1); rs and
rc are resistances for bare soil and the canopy (s m−1),
respectively; e∗ is the saturated vapor pressure of the
evapotranspiration surface (Pa); and ea is the vapor pres-
sure of air (Pa). In particular, e∗ is also related to RET:

e∗ = 6.11× 10
7.5RETc

237.3+RETc , (20)

where RETc is RET expressed in degree Celsius (◦C).

In this paper, we parameterized rs and rc following the
work of Corbari et al. (2011) and Yan et al. (2012), ow-
ing to the similar soil water routines of the XAJ model
and models reported by these authors.

rs = 3.5
(
θsat

θ

)2.3

+ 33.5, (21)

rc =
1
Rh

rs min

LAI
θfc− θwp

θ − θwp
, (22)

where θs is saturated soil moisture (–); θ is soil moisture
(–); rs min is minimum stomatal resistance of canopy
(s m−1); Rh is relative humidity (–); and θfc and θwp are
field capacity and wilting point (–), respectively.

As is summarized in Sect. 1, there are several approaches
to derive latent heat flux from the energy balance. In this
paper, we adopted the approach proposed by Corbari et al.

(2011) where the energy balance is solved by determining
RET, which is theoretically the land surface temperature
(LST) that closes the balance. Given that the energy stor-
age term (1S) is often negligible at the basin scale (Corbari
et al., 2011) and the remaining energy budget components
in Eq. (4) are all related to RET, we employed Newton–
Raphson iterative method to solve RET that can close the
energy balance. As reported by Corbari et al. (2011), the
Newton–Raphson method is an efficient way to solve the
energy balance under different hydro-meteorological condi-
tions. The actual LE is then solved based on the resulting
RET using Eq. (17) through Eq. (22).

2.2.1 XAJ-EB: the XAJ model improved by coupling
mass–energy balance

The mass (Eq. 1) and energy balance (Eq. 4) is coupled
through ET and W . ET is derived from LE in the energy bal-
ance as

ET=
LE
λρw

, (23)

where λ is the latent heat of vaporization (MJ kg−1) and ρw
is the density of water (kg m−3).

Different from many models that simply link the mass and
energy balance, an iterative algorithm is employed here to
ensure the full coupling between mass and energy balance.
More specifically, for a given time step, based on W of the
previous time step, the energy balance calculates ET and
transfers it to the mass balance to update W . The updated W
is transferred back to the energy balance to calculate ET un-
til the coupled mass–energy balance is achieved, i.e., differ-
ence in W from the last two iterations is below a pre-defined
threshold (0.01 in this paper).

In order to couple the energy balance to the XAJ model,
we changed the basic computational unit for runoff yield,
from an elementary area to a grid cell. The computational
unit of the energy balance scheme is grid because all inputs
to it are grid-based, which is different from that of the XAJ
model. We adopted the “Grid-XAJ” concept that also em-
ploys the grid as a computational unit (Li et al., 2007; Yao
et al., 2009). Here, we used a grid to compute runoff yield
only, rather than all processes, because runoff separation and
routing are isolated from runoff yield and do not affect the
mass balance of the grid.

The improved XAJ model, i.e., XAJ-EB introduces atmo-
spheric forcing and remote sensing data as input and cal-
culates runoff, evapotranspiration and soil water simultane-
ously using a grid cell based on the mass–energy balance.
Runoff yield calculated for grid cells are aggregated to an
elementary area for routing simulation.

By coupling the energy balance scheme, XAJ-EB is able
to calculate ET based on meteorological and remote sensing
data, providing ET estimation at high spatial and temporal
resolution, which successfully overcomes the defects of orig-
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inal ET scheme of the XAJ model. More importantly, as a key
variable of the energy balance solution, RET represents the
equilibrium temperature of the land surface that controls the
entire mass–energy balance. RET is comparable to LST re-
trieved from remotely sensed imagines (Corbari et al., 2011),
which serves as a new constraint of the XAJ model besides
runoff.

3 Evaluation of the XAJ-EB model

3.1 Study Area

We selected a gauged catchment, namely the LuShui River
catchment (LS) to test the XAJ-EB model. It is situated in
the middle reaches of Yangtze River (Chang Jiang) basin and
is controlled by the ChongYang hydrological site (Fig. 3). LS
covers an area of 2250 km2, ranging from 29.08 to 29.83◦ N
and 113.67 to 114.17◦ E. Annual precipitation, pan evapora-
tion and runoff depth of LS are 1550, 1200 and 753.3 mm,
respectively (Cheng et al., 2013). The study area is mainly
characterized by mountainous and hilly terrain, which cov-
ers more than 90 % the total area, with a mean elevation of
258 m. According to MODIS-based land cover climatology
data (Broxton et al., 2014), the major land cover types of this
area are cropland and mixed forests. There are eight precip-
itation sites and one hydrological site within the catchment,
operated by the Bureau of Hydrology, Yangtze River Water
Resources Commission.

3.2 Data

3.2.1 Digital elevation model (DEM)

We mainly relied on digital elevation model (DEM) to de-
lineate the sub-catchments and elementary areas (the ba-
sic computational unit of the XAJ model; see Sect. 2.1
for details). The DEM dataset employed in this paper was
ASTER (Advanced Spaceborne Thermal Emission and Re-
flection Radiometer) DEM version 2, released in Octo-
ber 2011 by the US National Aeronautics and Space Admin-
istration (NASA) and Japan’s Ministry of Economy, Trade,
and Industry (METI). The spatial resolution of ASTER DEM
is 1′′ (approximately 30 m in the study area). DEM data
were downloaded from http://dx.doi.org/10.5067/ASTER/
ASTGTM.002 and extracted based on the boundary of LS.
To match the spatial scale of the model (see Sect. 3.3 for de-
tails), we further resampled the DEM to the spatial resolution
of 1 km using majority resampling technique.

3.2.2 Land cover and soil data

Land cover and soil data were used to determine several land
cover or soil-dependent parameters (e.g., minimal stomatal
resistance and soil tension water capacity) of the model.

The land cover dataset we chose was 0.5 km MODIS-
based Global Land Cover Climatology developed by Broxton
et al. (2014) based on 10 years (2001–2010) of the MODIS
land cover (MCD12Q1, Collection 5.1) product. The dataset
classified the land surface into 17 different land cover types,
avoiding the unrealistic land cover change as observed by the
original MCD12Q1 product. The land cover dataset is avail-
able online at http://landcover.usgs.gov/global_climatology.
php. Similar to the DEM data, we resampled the land cover
data into 1 km spatial resolution using majority resampling
technique.

We mainly used two types of soil data properties for
this study, i.e., soil physical properties (e.g., field capacity),
which were obtained from a dataset developed by Dai et al.
(2013), and soil thickness obtained from a dataset developed
by Pelletier et al. (2015). The former dataset, namely the
“China dataset of soil properties”, was developed mainly for
land surface modeling and includes various soil hydraulic pa-
rameters derived from soil physical and chemical properties
using pedotransfer functions (Dai et al., 2013). The spatial
resolution of this dataset is 30′′ (approximately 1 km in the
study area) and the vertical variation of the soil properties is
documented for seven layers to a depth of 1.38 m. The soil
property data were retrieved from http://globalchange.bnu.
edu.cn/research/soil3. The latter dataset, namely the “grid-
ded global dataset of soil, immobile regolith and sedimen-
tary deposit thicknesses”, documents the estimation of the
thickness of the permeable layers above the bedrock (Pel-
letier et al., 2015), which can be regarded as soil depth de-
fined by the XAJ model. This dataset was retrieved from
http://dx.doi.org/10.3334/ORNLDAAC/1304, and it has the
same spatial resolution as the China dataset of soil properties
at 30′′.

3.2.3 Remote sensing data

Variables retrieved from remote sensing data were used to
drive (e.g., LAI and albedo) or validate the model (e.g., LST).
We adopted various moderate resolution imaging spectrora-
diometer (MODIS) products to provide spatial estimations
of LAI, albedo and LST; detailed information on these vari-
ables, including product name and spatial and temporal res-
olution, can be found in Table 2. All remote sensing data
were download from http://reverb.echo.nasa.gov/ for the pe-
riod between year 2004 and 2007. The albedo dataset was
resampled to a 1 km spatial resolution.

3.2.4 Meteorological and hydrological data

The meteorological forcing data we employed included pre-
cipitation, downward shortwave radiation, downward long-
wave radiation, wind speed, air temperature, air pressure and
specific humidity from 2004 to 2007. Precipitation data from
eight rain gauges were collected by the Bureau of Hydrology,
Yangtze River Water Resources Commission. All other forc-
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Figure 3. Lushui (LS) catchment. The red triangle is the ChongYang hydrological site that observes precipitation, pan evaporation and runoff;
the green dots are precipitation sites set up to measure precipitation only; the blue line is the LS stream. The elementary areas are also shown,
which are the computation unit of the XAJ models (see Sect. 2.1 for details).

Table 2. Variable, MODIS product name, and spatial and temporal resolution of the remote sensing data used in this paper

Remote sensing variable MODIS product name Spatial resolution Temporal resolution

LAI MCD15A3 1 km 4-day
Albedo MCD43A1 500 m 16-day
LST MOD11A1 1 km Daily
ET MOD16A2 1 km 8-day

ing data were retrieved from the China Meteorological Forc-
ing Dataset (CMFD) (He and Yang, 2011), which was pro-
duced by merging a variety of data sources (Chen et al., 2011;
Leng et al., 2015). The spatial and temporal resolutions of
this dataset are 0.1◦ (approximately 10 km in the study area)
and 3 h, respectively. The dataset was downloaded from http:
//westdc.westgis.ac.cn/. Runoff and pan evaporation data of
the ChongYang hydrological station for the same period were
also collected by the Bureau of Hydrology.

3.3 Model setup

In consideration of the catchment characteristics as well as
data availability, we defined the dimension of the computa-
tional grid as 1 km× 1 km, resulting in 72 columns×60 rows
that covered the study area. All other datasets were resam-
pled to 1 km× 1 km resolution. The temporal resolution of
the model is 3 h, the same as the meteorological forcing data.

The estimation of areal mean precipitation in the compu-
tational grid is crucial for the accurate hydrological model-
ing. Several approaches existed for spatially interpolating the
precipitation from gauges; however, their performances and
uncertainties depend on certain conditions including the pat-

tern of precipitation, the characteristic of catchment and the
locations of gauges (Ball and Luk, 1998; Di Piazza et al.,
2011; Zhang and Srinivasan, 2009). It is difficult to evalu-
ate the performance of different interpolation approaches in
LS since the true areal precipitation is theoretically not avail-
able. In this paper, the conventional Thiessen polygon ap-
proach, the one intensively used in the XAJ model, was em-
ployed to derive the spatially distributed precipitation from
eight gauges. To make the precipitation inputs of XAJ-EB
comparable to those of XAJ, the precipitation of gauges are
interpolated to grids by the following steps:

1. Thiessen polygons were generated according to the ge-
ographic locations of gauges.

2. Thiessen polygons were overlaid with element areas,
and the precipitation of ith element area (Pi) was
weighted by Thiessen polygons that intersected with it
(the precipitation of green-filled element area in Fig. 4
was determined by Thiessen polygons 1, 3, 4 and 5, tak-
ing their area as weight).

3. Grids belonging to the same element area i were as-
signed the same precipitation Pi .
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Figure 4. Sketch plot of precipitation calculation based on element
areas and Thiessen polygons.

As seen from Eq. (4) through Eq. (22), a range of pa-
rameters/variables is needed for the energy balance scheme.
Each grid was assigned a set of time-independent parame-
ters including soil physical properties (e.g., θfc) and vegeta-
tion properties (e.g., rs min) based on soil and vegetation type.
Other time-dependent variables were obtained either from re-
mote sensing data (e.g., LAI) or model-simulated states (e.g.,
θ ).

3.4 Calibration and validation of the XAJ model

As listed in Table 1, several parameters have to be estimated
before applying the XAJ model, among which tension wa-
ter capacity WM has the physical definition that can be esti-
mated from the soil proprieties for each grid:

WM= (θfc− θwp)×SD, (24)

where SD is soil depth (mm). All three soil proprieties can
be retrieved from soil dataset described above.

For parameters other than WM, 2 years of data (2004 and
2005) were chosen to perform a calibration against observed
runoff data using the original XAJ model, which calculates
ET using measured pan evaporation.

We first introduced a model-independent parameter esti-
mation tool, namely PEST (Doherty et al., 1994) to pro-
vide an optimized combination of parameters. PEST is based
on the Gauss–Marquardt–Levenberg (GML) algorithm (Mar-
quardt, 1963) and has been widely applied in calibrating
hydrological models. The initial values as well as the opti-
mization limits of the parameters were set according to Zhao
(1984). After the automatic calibration, we used the tradi-
tional trial and error method to adjust some parameters based
on our experience in calibrating the XAJ model. This is be-

cause the algorithm implemented by PEST tries to fit the
complete time series of runoff observations, regardless of
high flows or low flows, while the flood events are the major
concerns of real-time flood forecasting. Therefore, the trial
and error method was applied to improve the simulations of
high flows based on parameters optimized by PEST.

The metrics adopted to evaluate the model performance
are the root mean square error (RMSE), Nash–Sutcliffe
model efficiency coefficient (NSE) and relative error of to-
tal runoff volume (bias):

RMSE=

√√√√1
n

n∑
i=1
(Qobs,i −Qsim,i)

2, (25)

NSE= 1−

n∑
i=1
(Qobs,i −Qsim,i)

2

n∑
i=1
(Qobs,i −Qobs)

2
, (26)

bias=
Vsim−Vobs

Vobs
, (27)

Vsim =

n−1∑
i=1

(
Qsim,1+Qsim,i+1

2

)
1ti, (28)

Vobs =

n−1∑
i=1

(
Qobs,1+Qobs,i+1

2

)
1ti, (29)

whereQobs,i andQsim,i are observed and modeled discharge
(m3 s−1) at time step i, respectively; n is total time step; and
1ti is the interval between time step i and i+ 1 (s).

Table 1 summaries the optimized parameter values while
Fig. 5a shows comparison between XAJ-modeled and ob-
served runoff during the calibration period. The XAJ model
reproduced both the variation and amplitude of flood events
with RMSE, NSE and bias values of 37.96 m3 s−1, 0.70 and
−0.09 %, respectively, which indicates the good performance
of the model and the efficiency of our calibration strategy.
One important objective of the calibration process was to
control the overall water balance (−0.09 %) by adjusting KC
based on pan evaporation, because the model performance is
sensitive to the accuracy and representativeness of the pan
evaporation observations.

To validate the model, we ran the model for another 2 years
(2006 and 2007) with these calibrated parameters. Figure 5b
presents the validation results, which shows the good agree-
ment between XAJ-modeled and observed runoff. Although
the XAJ model slightly overestimated the total runoff volume
by 2.18 %, the RMSE and NSE were even better than the val-
ues obtained during the calibration period, further confirming
the fitness and robustness of the parameters we calibrated.

3.5 Validation of XAJ-EB against runoff

Given that the mass balance of the XAJ model remained un-
changed, we used the calibrated parameters directly to run
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Figure 5. Comparison between observed and XAJ-modeled daily
runoff for the ChongYang hydrological site for the calibration
(a; 1 January 2004–31 December 2005) and validation (b; 1 Jan-
uary 2006–31 December 2007) period. Also shown the evaluation
metrics including RMSE, NSE, and bias.

Figure 6. Comparison between observed and XAJ-EB-modeled
daily runoff for tue ChongYang hydrological site for period between
1 January 2004–31 December 2007. Also shown the evaluation met-
rics including RMSE, NSE, and bias.

the XAJ-EB model for the whole period between 2004 and
2007. For this simulation using XAJ-EB, the coefficient KC
was eliminated since the ET was simulated directly using
the mass–energy balance scheme. Figure 6 shows the com-
parison between XAJ-EB-modeled and observed runoff. The
overall RMSE, NSE and bias were 26.09 m3 s−1, 0.77 and
−0.53 %, respectively. The overall performance of the runoff
simulation by XAJ-EB is comparable to that of the original
XAJ model.

3.6 Validation of XAJ-EB against MODIS LST

The RET simulated by XAJ-EB is theoretically the LST that
closes the energy balance, which is comparable to the LST
retrieved from remote sensing data, providing another vari-
able for model calibration and validation. Among various

Figure 7. Scatter plot of MODIS-retrieved and XAJ-EB-modeled
land surface temperature (LST), (a): catchment-average LST
and (b): grid LST.

LST products released, the MODIS LST products have been
widely used owing to high accuracy (Corbari et al., 2011,
2014b; Wan et al., 2004). The dataset we used in this paper is
the MOD11A1 daytime LST product. Although it is available
daily at a 1 km spatial resolution, some images are affected
by cloud, resulting in a high number of missing values. In or-
der to better validate the LST simulation, we examined each
image for the whole simulation period and chose 107 images
with a maximum of 30 % missing values.

We first performed grid-by-grid comparison using the
sampling XAJ-EB-modeled LST according to MODIS LST
data availability, the fitness was evaluated by coefficient of
determination (R2):

R2
= (30)

n

(
n∑
i=1

LSTsim,iLSTobs,i

)
−

n∑
i=1

LSTsim,i
n∑
i=1

LSTobs,i√√√√[n( n∑
i=1

LST2
sim,i

)
−

(
n∑
i=1

LSTsim,i

)2
][
n

(
n∑
i=1

LST2
obs,i

)
−

(
n∑
i=1

LSTobs,i

)2
]


2

,

where LSTsimi
and LSTobsi are XAJ-EB-modeled and

MODIS-retrieved LST (K), respectively, at time step i; and
n is the total LST data to be evaluated.

Figure 7a shows the scatter plot between the XAJ-EB-
modeled and MODIS-retrieved grid LST for all 107 MODIS
images we chose; the resulting R2 value reached reaches
0.91, indicating the good agreement between the two vari-
ables. We also plotted the catchment-average LST (Fig. 7b),
from which we can clearly see that most LST points are dis-
tributed along the 1 : 1 line with small deviation. Figure 7 in-
dicates that XAJ-EB is capable of accurately simulating LST
under various hydro-meteorological and underlying surface
conditions.

We also plotted the time series of XAJ-EB-modeled
catchment-average LST against MODIS-retrieved
catchment-average LST (Fig. 8), and calculated the
corresponding RMSE and NSE values as 2.25 K and 0.89,
respectively. The results are acceptable since the overall
accuracy of the MODIS LST product is reported to be ±1 K
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Figure 8. Time series of modeled catchment-average land surface
temperature for the period between 1 January 2004–31 Decem-
ber 2007. The MODIS-retrieved catchment-average land surface
temperature (LST) is also shown when the data availability ex-
ceeded the threshold (see Sect. 3 for details).

(Kalma et al., 2008), which further confirm the fit between
XAJ-EB-modeled and MODIS-retrieved LST.

3.7 Validation of XAJ-EB against MODIS ET

There were no direct ET measurements in the LS catchment
due to the lack of eddy flux towers. Consequently, to evalu-
ate the ET simulation from XAJ-EB, we adopted the MODIS
ET(MOD16A2) product as the reference. Different from the
MODIS LST product, MODIS ET is based on the PM equa-
tion using various MODIS products (Mu et al., 2007, 2011).
Although many studies have confirmed the overall accuracy
of the product, the specific accuracy over some regions can-
not always be guaranteed due to the algorithm itself as well as
land surface characteristics (Corbari et al., 2014b; Mu et al.,
2007, 2011; Ramoelo et al., 2014; Roux et al., 2013).

Figure 9 shows the catchment average of XAJ-EB-
modeled and MODIS-estimated 8-day ET; we also included
the XAJ-modeled ET here for comparison. Total MODIS-
estimated ET for this period is 3234.8 mm, higher than the
2655.7 mm from XAJ-EB and 2393.4 mm from XAJ. How-
ever, the cumulative observed precipitation and runoff values
for the whole study period were 4609.0 and 2193.3 mm, re-
spectively, from which we can roughly estimate the cumula-
tive ET for the same period as 2416.7 mm if we assume total
precipitation can be balanced by ET and runoff over such a

Figure 9. Comparison among MODIS-retrieved, XAJ and XAJ-
EB-modeled 8-day catchment-average evapotranspiration (ET) for
period between 1 January 2004–31 December 2007. The 8-day
gauge-measured catchment-average precipitation is also shown for
the same period.

long period. Corbari et al. (2014b) reported an overestimate
of MODIS ET for the Yangtze River basin, which is in ac-
cordance with our results as shown in Fig. 9; i.e., MODIS
ET is higher than ET from both models. Although there is
bias in the total ET estimation, XAJ-EB-modeled ET had an
R2 value of 0.70, higher than that of the XAJ-modeled ET
(0.50), which means the variation in ET from XAJ-EB was
close to MODIS-estimated ET.

4 Discussion

4.1 Advantages of XAJ-EB over XAJ

In this paper, the original XAJ model was improved by cou-
pling the mass–energy balance scheme. Validations using
both ground-measured runoff and remotely sensed LST have
proved the performance of XAJ-EB. Compared with the orig-
inal XAJ model, there are some obvious advantages of the
XAJ-EB model that overcome several defects as we reported
in Sect. 1. First the model is capable of providing more re-
liable ET at high spatial and temporal resolution based on
meteorological forcing and remotely sensed data, which may
influence the soil moisture and further influence the runoff
simulation. During 2007, we can see from Fig. 10b that the
most significant difference occurred during the dry season
when there was little precipitation, and the low SMC from
XAJ-EB before the two largest flood events reduced the flood
peak, which was closer to the observations (Fig. 10a).

Another advantage is that XAJ-EB is more suitable for
use in ungauged basins, where either measured pan evapo-
ration or runoff data are unavailable. This is because XAJ-
EB simulates ET based on meteorological forgings and re-
motely sensed data, rather than measured pan evaporation
used by XAJ. Moreover, LST is a crucial parameter con-
trolling the mass–energy balance, which reflects the interac-
tions among different processes (Wang et al., 2009). More-
over, LST is also an indicator of SMC variation (Corbari
et al., 2011; Sandholt et al., 2002). Therefore, the model-
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Figure 10. Comparison between XAJ and XAJ-EB-modeled daily
runoff (a) and soil moisture (b) for the year 2007; soil moisture is
expressed as equivalent water depth (soil depth ∗ volumetric soil
moisture) as defined by the XAJ model.

simulated LST provides an alternative way to calibrate and
validate the spatially distributed parameters, especially when
observed runoff data are unavailable. In fact, some efforts
have been made to exploit the LST for hydrological model-
ing (Corbari and Mancini, 2014; Corbari et al., 2014a; Silve-
stro et al., 2013; Wang et al., 2009), and these studies have
demonstrated the possibility of using LST as a supplement to
traditional runoff data.

Finally, the XAJ model is not for flood forecasting only; it
has been used for investigating the effects of climate (Peng
and Xu, 2010) or land cover (Tian et al., 2013; Qu et al.,
2011) change on streamflow, identifying the drought events
(Duan and Mei, 2014) and examining the variability of SMC
memory for wet and dry basins (Rahman et al., 2015). Such
studies can benefit from reliable ET and SMC simulation. By
explicitly taking into consideration meteorological forcing,
land cover and vegetation characteristics, XAJ-EB is more
suitable than XAJ for the study of hydrological responses
under changing climate/land cover, which may help to extend
the applications of original XAJ model.

4.2 Applicability of simplified energy balance of
XAJ-EB

As we mentioned in Sect. 1, the energy balance scheme de-
veloped for the XAJ model is physically based with proper
structures that are suitable for real-time flood forecasting op-
erations. Consequently, we used certain generalizations and
simplifications, especially for LST, we adopted a lumped
RET to represent the integrated LST for the land surface. In
contrast, some LSMs involve more sophisticated schemes;

Figure 11. Comparison between XAJ-EB and Noah-MP-modeled
catchment-average latent heat flux (a) and land surface tempera-
ture (b). Panel (c) illustrates the comparison between catchment-
average precipitation used by XAJ-EB and Noah-MP.

e.g., Noah-MP LSM (Niu et al., 2011) introduced three dif-
ferent LSTs: Tg,b for temperature of bare ground fraction,
Tg,v for temperature of the vegetated fraction and Tv for
canopy surface temperature.

To further investigate the applicability of XAJ-EB, we ran
Noah-MP with the same dataset we used for XAJ-EB but
excluded precipitation. Because Noah-MP requires grid pre-
cipitation input, we used the CMFD precipitation field rather
than the gauge-measured value. Figure 11 presents the com-
parison of daily LST and latent heat flux from XAJ-EB with
those from Noah-MP.

LST from Noah-MP was estimated using the simulated
upward long-wave radiation, which represents the integra-
tion of different land surface components within the grid
(see Niu et al., 2011, for details). Figure 11a shows a gen-
erally good agreement between the XAJ-EB and Noah-MP-
simulated LST, with RMSE, NSE and bias values as 1.68 K,
0.97 and−0.20 %. Such good agreement indicates that, com-
paring with Noah-MP with multiple LSTs, the energy bal-
ance scheme of XAJ-EB is able to produce reliable LST with
only one lumped temperature.

As for the latent heat flux, although the overall bias was
small (−2.53 %), low NSE (0.53) indicates there is an incon-
sistency in inconsistence of the ET time series. This is partly
due to the different precipitation fields we used for the two
models, which had an NSE of only 0.51 (Fig. 11c). By com-
paring Fig. 11b with Fig. 11c we found that a larger bias of
ET generally corresponds to a larger bias in precipitation.

In addition to the simplification of the energy balance
scheme, XAJ-EB also makes use of various remote sensing
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products (LAI, albedo, etc.) to eliminate the processes that
have little effects on flood forecasting (e.g., vegetation dy-
namics), only retaining the essential processes that related
to ET and runoff simulation, which help to reduce both the
complexity of the model and number of parameters need cal-
ibrated.

4.3 Calibration strategy of the model

Calibration is necessary for hydrological models, even for the
physically based models (Singh and Bárdossy, 2012). There
has been the concern regarding the selection of runoff ob-
servations for calibration. In general, runoff data including
both dry and wet conditions is required to represent the var-
ious characteristics of the catchment, from which the stable
and robust parameter values can be obtained (PERRIN et al.,
2007; Razavi and Tolson, 2013; Singh and Bárdossy, 2012).
However, considering the data availability, researchers have
been studying the calibration strategies using runoff obser-
vations of short periods (e.g., Kim and Kaluarachchi, 2009;
Sun et al., 2017; Wang et al., 2017). Although specific results
differ depending on the catchments as well as the models
adopted, they all found that high-flow periods exert greater
influence on model calibration, which implies that the hydro-
logical models can be calibrated against high flows, which
are more important for real-time forecasting.

To validate the energy balance scheme as well as the XAJ-
EB model developed in this paper, a two-step calibration of
the XAJ model was applied (Sect. 3.4). The first step was
to calibrate the parameters using PEST based on the com-
plete time series of runoff observations. This is because the
calibration of parameter KC requires complete runoff ob-
servations of several years to ensure that the accumulated
simulated runoff was close to the corresponding observed
value (Zhao, 1992), and the validation of LST and ET from
XAJ-EB also requires accurate mass balance simulations all
through the year, covering flood and non-flood periods, to
better evaluate the performance of the model under various
hydro-meteorological conditions. Then for the second step,
the trial and error method was applied to adjust the resulting
optimized parameters, mainly according to the high flows of
flood events. Such straightforward but effective calibration
strategy stroked a balance between the representativeness of
the runoff data and the importance of large flood events, pro-
viding the reliable baseline to validate the XAJ-EB model in
this study. However, a more rigorous quantification of the un-
certainties in parameters calibration is need for the XAJ and
XAJ-EB model in subsequent studies.

5 Conclusion

In this paper, an energy-balance-based scheme suitable for
the XAJ model was developed by explicitly taking account
of bare soil and the canopy using a “patch approach”. Dif-

ferent energy fluxes for bare soil and the canopy respectively
were parameterized. The energy balance was simulated by
determining RET, which is theoretically the LST that closes
the balance. The energy balance scheme was then fully cou-
pled to the mass balance scheme of the XAJ model. In the
improved model, XAJ-EB estimates the actual ET and runoff
yield through a mass–energy balance approach using various
meteorological and remotely sensed data.

Taking the LS catchment as the study area, we calibrated
and validated the original XAJ model and used the same op-
timized parameters to evaluate the performance of the XAJ-
EB model. With respect to the runoff simulation for the pe-
riod between 2004 and 2007, the XAJ-EB model had RMSE,
NSE and bias values of 26.09 m3 s−1, 0.77 and −0.53 %,
respectively. The results well matched the observed runoff,
which was also comparable to the original XAJ model. In
addition to runoff, XAJ-EB is also capable of simulating
the dynamics of LST with R2, RMSE and NSE values of
0.93, 2.25 K and 0.89, respectively, compared with MODIS-
retrieved catchment-average LST. The good match between
modeled and remotely sensed LST implies that the XAJ-EB
model is able to reproduce the mass–energy balance pro-
cesses since LST reflects the interactions among various pro-
cesses. Moreover, with LST as an output, XAJ-EB adds a
new constraint and offers a potentially new approach for
model calibration and validation, especially when runoff data
are unavailable.

The mass–energy balance scheme developed in this pa-
per is comparable to the sophisticated LSM Noah-MP model
in terms of LST and latent heat flux modeling, which over-
comes several defects of the original XAJ model that sim-
ulates actual ET using pan evaporation measurements. The
inter-comparison between XAJ-EB and XAJ shows that the
improvement of ET estimation helps to improve the runoff
simulation, especially the runoff peak, which is the major
concern of real-time flood forecasting. Moreover, by explic-
itly taking into consideration different atmospheric and un-
derlying surface conditions, XAJ-EB is more suitable than
XAJ for the study of hydrological responses under chang-
ing climate/land cover, which extend the applications of the
original XAJ model.

Data availability. All data except hydrological data (i.e. precipita-
tion, pan evaporation, runoff) can be accessed through URLs pro-
vided in Sect. 3.2. Those who need hydrological data can contact
the corresponding author X. Zhang (zxn@hhu.edu.cn).
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